Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Front Immunol ; 12: 659339, 2021.
Article in English | MEDLINE | ID: covidwho-1241169

ABSTRACT

Globally, over two million people have perished due to the recent pandemic caused by SARS-CoV-2. The available epidemiological global data for SARS-CoV-2 portrays a higher rate of severity and mortality in males. Analyzing gender differences in the host mechanisms involved in SARS-CoV-2 infection and progression may offer insight into the more detrimental disease prognosis and clinical outcome in males. Therefore, we outline sexual dimorphisms which exist in particular host factors and elaborate on how they may contribute to the pronounced severity in male COVID-19 patients. This includes disparities detected in comorbidities, the ACE2 receptor, renin-angiotensin system (RAS), signaling molecules involved in SARS-CoV-2 replication, proteases which prime viral S protein, the immune response, and behavioral considerations. Moreover, we discuss sexual disparities associated with other viruses and a possible gender-dependent response to SARS-CoV-2 vaccines. By specifically highlighting these immune-endocrine processes as well as behavioral factors that differentially exist between the genders, we aim to offer a better understanding in the variations of SARS-CoV-2 pathogenicity.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/immunology , Cardiovascular Diseases/epidemiology , SARS-CoV-2/physiology , Sex Factors , Animals , COVID-19/epidemiology , COVID-19/mortality , Cardiovascular Diseases/mortality , Disease Progression , Disease Susceptibility , Female , Humans , Male , Pandemics , Renin-Angiotensin System , Risk , Sex Characteristics
2.
Front Immunol ; 12: 663586, 2021.
Article in English | MEDLINE | ID: covidwho-1190318

ABSTRACT

As of January 2021, SARS-CoV-2 has killed over 2 million individuals across the world. As such, there is an urgent need for vaccines and therapeutics to reduce the burden of COVID-19. Several vaccines, including mRNA, vector-based vaccines, and inactivated vaccines, have been approved for emergency use in various countries. However, the slow roll-out of vaccines and insufficient global supply remains a challenge to turn the tide of the pandemic. Moreover, vaccines are important tools for preventing the disease but therapeutic tools to treat patients are also needed. As such, since the beginning of the pandemic, repurposed FDA-approved drugs have been sought as potential therapeutic options for COVID-19 due to their known safety profiles and potential anti-viral effects. One of these drugs is ivermectin (IVM), an antiparasitic drug created in the 1970s. IVM later exerted antiviral activity against various viruses including SARS-CoV-2. In this review, we delineate the story of how this antiparasitic drug was eventually identified as a potential treatment option for COVID-19. We review SARS-CoV-2 lifecycle, the role of the nucleocapsid protein, the turning points in past research that provided initial 'hints' for IVM's antiviral activity and its molecular mechanism of action- and finally, we culminate with the current clinical findings.


Subject(s)
Active Transport, Cell Nucleus/drug effects , Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , Ivermectin/therapeutic use , SARS-CoV-2/drug effects , Animals , Cell Line , Chlorocebus aethiops , Coronavirus Nucleocapsid Proteins/antagonists & inhibitors , Coronavirus Nucleocapsid Proteins/metabolism , Drug Repositioning , Humans , Phosphoproteins/antagonists & inhibitors , Phosphoproteins/metabolism , Protein Transport/drug effects , SARS-CoV-2/growth & development , Vero Cells , Virus Replication/drug effects , alpha Karyopherins/antagonists & inhibitors , beta Karyopherins/antagonists & inhibitors
3.
Mol Pharmacol ; 99(1): 17-28, 2021 01.
Article in English | MEDLINE | ID: covidwho-1109614

ABSTRACT

ACE2 has emerged as a double agent in the COVID-19 ordeal, as it is both physiologically protective and virally conducive. The identification of ACE2 in as many as 72 tissues suggests that extrapulmonary invasion and damage is likely, which indeed has already been demonstrated by cardiovascular and gastrointestinal symptoms. On the other hand, identifying ACE2 dysregulation in patients with comorbidities may offer insight as to why COVID-19 symptoms are often more severe in these individuals. This may be attributed to a pre-existing proinflammatory state that is further propelled with the cytokine storm induced by SARS-CoV-2 infection or the loss of functional ACE2 expression as a result of viral internalization. Here, we aim to characterize the distribution and role of ACE2 in various organs to highlight the scope of damage that may arise upon SARS-CoV-2 invasion. Furthermore, by examining the disruption of ACE2 in several comorbid diseases, we offer insight into potential causes of increased severity of COVID-19 symptoms in certain individuals. SIGNIFICANCE STATEMENT: Cell surface expression of ACE2 determines the tissue susceptibility for coronavirus infectious disease 2019 infection. Comorbid disease conditions altering ACE2 expression could increase the patient's vulnerability for the disease and its complications, either directly, through modulation of viral infection, or indirectly, through alteration of inflammatory status.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19/metabolism , COVID-19/pathology , Animals , COVID-19/virology , Humans , Pandemics , SARS-CoV-2/pathogenicity , Severity of Illness Index
4.
Neuroscientist ; 28(6): 552-571, 2022 12.
Article in English | MEDLINE | ID: covidwho-1006357

ABSTRACT

SARS-CoV-2 infects cells through angiotensin-converting enzyme 2 (ACE2), a ubiquitous receptor that interacts with the virus' surface S glycoprotein. Recent reports show that the virus affects the central nervous system (CNS) with symptoms and complications that include dizziness, altered consciousness, encephalitis, and even stroke. These can immerge as indirect immune effects due to increased cytokine production or via direct viral entry into brain tissue. The latter is possible through neuronal access via the olfactory bulb, hematogenous access through immune cells or directly across the blood-brain barrier (BBB), and through the brain's circumventricular organs characterized by their extensive and highly permeable capillaries. Last, the COVID-19 pandemic increases stress, depression, and anxiety within infected individuals, those in isolation, and high-risk populations like children, the elderly, and health workers. This review surveys the recent updates of CNS manifestations post SARS-CoV-2 infection along with possible mechanisms that lead to them.


Subject(s)
COVID-19 , Stroke , Child , Humans , Aged , COVID-19/complications , SARS-CoV-2 , Pandemics , Blood-Brain Barrier
5.
Eur J Pharmacol ; 887: 173547, 2020 Nov 15.
Article in English | MEDLINE | ID: covidwho-753635

ABSTRACT

COVID-19 has caused worldwide death and economic destruction. The pandemic is the result of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which has demonstrated high rates of infectivity leading to great morbidity and mortality in vulnerable populations. At present, scientists are exploring various approaches to curb this pandemic and alleviate its health consequences, while racing to develop a vaccine. A particularly insidious aspect of COVID-19 is the delayed overactivation of the body's immune system that is manifested as the cytokine storm. This unbridled production of pro-inflammatory cytokines and chemokines can directly or indirectly cause massive organ damage and failure. Systemic vascular endothelial inflammation and thrombocytopenia are potential consequences as well. In the case of COVID-19, the cytokine storm often fits the pattern of the macrophage activation syndrome with lymphocytopenia. The basis for the imbalance between the innate and adaptive immune systems is not clearly defined, but highlights the effect of SARS-CoV-2 on macrophages. Here we discuss the potential underlying basis for the impact of SARS-CoV-2 on macrophages, both direct and indirect, and potential therapeutic targets. These include granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin 6 (IL-6), interferons, and CXCL10 (IP-10). Various biopharmaceuticals are being repurposed to target the cytokine storm in COVID-19 patients. In addition, we discuss the rationale for activating the macrophage alpha 7 nicotinic receptors as a therapeutic target. A better understanding of the molecular consequences of SARS-CoV-2 infection of macrophages could lead to novel and more effective treatments for COVID-19.


Subject(s)
Coronavirus Infections/drug therapy , Coronavirus Infections/immunology , Macrophages/immunology , Pneumonia, Viral/drug therapy , Pneumonia, Viral/immunology , Animals , COVID-19 , Coronavirus Infections/physiopathology , Cytokines/metabolism , Humans , Inflammation/etiology , Inflammation/physiopathology , Macrophage Activation Syndrome/complications , Macrophage Activation Syndrome/physiopathology , Macrophages/drug effects , Pandemics , Pneumonia, Viral/physiopathology
6.
Front Pharmacol ; 11: 836, 2020.
Article in English | MEDLINE | ID: covidwho-615564

ABSTRACT

In December 2019, reports of viral pneumonia came out of Wuhan city in Hubei province in China. In early 2020, the causative agent was identified as a novel coronavirus (CoV) sharing some sequence similarity with SARS-CoV that caused the severe acute respiratory syndrome outbreak in 2002. The new virus, named SARS-CoV-2, is highly contagious and spread rapidly across the globe causing a pandemic of what became known as coronavirus infectious disease 2019 (COVID-19). Early observations indicated that cardiovascular disease (CVD) patients are at higher risk of progression to severe respiratory manifestations of COVID-19 including acute respiratory distress syndrome. Moreover, further observations demonstrated that SARS-CoV-2 infection can induce de novo cardiac and vascular damage in previously healthy individuals. Here, we offer an overview of the proposed molecular pathways shared by the pathogenesis of CVD and SARS-CoV infections in order to provide a mechanistic framework for the observed interrelation. We examine the crosstalk between the renin-angiotensin-aldosterone system and mitogen activated kinase pathways that potentially links cardiovascular predisposition and/or outcome to SARS-CoV-2 infection. Finally, we summarize the possible effect of currently available drugs with known cardiovascular benefit on these pathways and speculate on their potential utility in mitigating cardiovascular risk and morbidity in COVID-19 patients.

SELECTION OF CITATIONS
SEARCH DETAIL